INTRODUCTION TO LOW TEMPERATURE PLASMAS

U. V. Bhandarkar

Department of Mechanical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076

PLASMA – IONIZED GAS

PLASMA – CHARACTERISTICS

- 1. Quasi-neutrality
- 2. Collective Behaviour
- 3. Length scale is far greater than a Debye Length
- 4. Number density per Debye sphere far greater than ONE.

PLASMA - CLASSIFICATION

High Temperature Plasmas:

Mostly equilibrium plasmas at high pressures. e.g. Arcs, lightning, stars.

Low Temperature Plasmas:

Mostly non-equilibrium plasmas at low pressures.

e.g.; Glow discharges (neon lights), Fluorescent tubes, sputtering plasmas, low temperature deposition plasmas.

PLASMA – TOWNSEND DISCHARGE

$$\Gamma_{tot} = \Gamma_{e} + \Gamma_{i}$$

$$\Gamma_{e}(0) = \frac{\gamma_{se}}{se} \Gamma_{i}(0)$$

$$1 + 1/\gamma_{se} = \exp \left[\int_{0}^{d} \alpha(z) dz \right]$$

ELECTRONS ARE FAST

Electrons are fast and charge a surface negatively.

SHEATH FORMATION

A positive space charge sheath forms near any surface.

Sheath is a few **Debye** lengths in thickness.

DEBYE LENGTH

$$\lambda_{D} = \left(\frac{\varepsilon_{o} k T_{e}}{ne^{2}}\right)^{1/2}$$

RF PLASMAS

DC plasmas cannot be used once the substrate becomes insulating. We then go for AC to sustain the plasma.

Radio-frequency (RF) plasmas are the most common plasmas seen in operation. The most common frequency used is 13.56 MHz.

RF plasmas are usually coupled using:

- 1) Capacitive coupling.
- 2) Inductive coupling.

PLASMA FREQUENCY

$$\omega_{\rm p} = \left(\frac{{\rm ne}^2}{\varepsilon_0 {\rm m}}\right)^{1/2}$$

POSITIVE ION

ELECTRON

CAPACITIVE COUPLING

INDUCTIVE COUPLING

TYPICAL EXPERIMENTAL SET-UP

DEPOSITION USING PLASMAS

Energetic electrons break bonds and form reactive radicals which react at the substrate.

POSITIVE IONS AT THE SHEATH EDGE

POSITIVE IONS REACHING
THE EDGE SEE A STEEP
DOWNHILL SLOPE.

THEY ARE ACCELERATED
IN THE SHEATH REGION
AND IMPACT THE
ELECTRODES WITH HIGH
ENERGIES.

ETCHING

ETCHING - ANISOTROPIC

ANISOTROPIC ETCHING

ISOTROPIC ETCHING

HEAVY NEGATIVE SPECIES ARE TRAPPED

PARTICLE GENERATION

THANK YOU